Інсталювати Steam
увійти
|
мова
简体中文 (спрощена китайська)
繁體中文 (традиційна китайська)
日本語 (японська)
한국어 (корейська)
ไทย (тайська)
Български (болгарська)
Čeština (чеська)
Dansk (данська)
Deutsch (німецька)
English (англійська)
Español - España (іспанська — Іспанія)
Español - Latinoamérica (іспанська — Латинська Америка)
Ελληνικά (грецька)
Français (французька)
Italiano (італійська)
Bahasa Indonesia (індонезійська)
Magyar (угорська)
Nederlands (нідерландська)
Norsk (норвезька)
Polski (польська)
Português (португальська — Португалія)
Português - Brasil (португальська — Бразилія)
Română (румунська)
Русский (російська)
Suomi (фінська)
Svenska (шведська)
Türkçe (турецька)
Tiếng Việt (в’єтнамська)
Повідомити про проблему з перекладом
⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠋⠀⠀⠀⠹⣿⣦⡀
⠀⠀⢀⣴⣿⣿⣿⣿⣏⠀⠀⠀⠀⠀⠀⢹⣿⣧
⠀⠀⠙⢿⣿⡿⠋⠻⣿⣿⣦⡀⠀⠀⠀⢸⣿⣿⡆
⠀⠀⠀⠀⠉⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⢸⣿⣿⡇
⠀⠀⠀⠀⢀⣀⣄⡀⠀⠀⠈⠻⣿⣿⣶⣿⣿⣿⠁
⠀⠀⠀⣠⣿⣿⢿⣿⣶⣶⣶⣶⣾⣿⣿⣿⣿⡁
⢠⣶⣿⣿⠋⠀⠀⠉⠛⠿⠿⠿⠿⠿⠛⠻⣿⣿⣦⡀
⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r ,
que relaciona a integral de superfície do rotacional de um campo vetorial numa superfície Σ no espaço tridimensional euclidiano à integral de linha do campo vetorial sobre sua fronteira, é um caso especial do teorema generalizado de Stokes (com n = 2) uma vez que se identifica um campo vetorial com uma 1-forma usando a métrica do espaço euclidiano. A curva da integral de linha, ∂Σ, deve ter orientação positiva, de modo que dr aponta no sentido anti-horário quando a normal da superfície, dΣ, aponta em direção ao observador, seguindo a regra da mão direita. Uma consequência da fórmula é que as linhas de campo de um campo vetorial com rotacional nulo não podem ter contorno fechado.
A fórmula pode ser escrita como:
∬ Σ { ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y
──────────█░░░░░░▒▒▒█▒█
─────────█░░░░░░▒▒▒█▒░█
───────▄▀░░░░░░▒▒▒▄▓░░█
──────█░░░░░░▒▒▒▒▄▓▒░▒▓
─────█▄▀▀▀▄▄▒▒▒▒▓▀▒░░▒▓
───▄▀░░░░░░▒▀▄▒▓▀▒░░░▒▓
──█░░░░░░░░░▒▒▓▀▒░░░░▒▓
──█░░░█░░░░▒▒▓█▒▒░░░▒▒▓
───█░░▀█░░▒▒▒█▒█░░░░▒▓▀
────▀▄▄▀▀▀▄▄▀░█░░░░▒▒▓─
──────────█▒░░█░░░▒▒▓▀─
───────────█▒░░█▒▒▒▒▓──
────────────▀▄▄▄▀▄▄▀
⠄⠄⠄⠄⠄⠄⢀⣴⣿⡿⠟⠛⠛⠻⠿⠿⠿⠿⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣿⣿⡋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠙⢿⣿⡄⠄⠄⠄⠄⠄.⠄
⠄⠄⠄⠄⠄⢾⣿⣿⡇⣴⣦⣤⣶⣦⡀⠄⢠⣴⣶⣶⣶⣼⣿⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠸⣿⣿⠙⠿⠿⠿⠍⠛⠃⠄⠈⠉⠉⠿⠿⠋⢻⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⢿⣿⣆⠄⠄⠄⠄⠄⣠⣤⣤⡄⠄⠄⠄⠄⡞⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠈⢻⣿⡀⠄⠄⢀⣀⣈⣙⣉⣀⣀⡀⠄⢠⠧⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢻⣿⣿⣦⡛⠉⠐⠒⠒⠂⠈⠙⣴⡿⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣷⣶⣶⣶⣷⣶⣶⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣴⡟⠻⣿⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄⠄