Instalar Steam
iniciar sesión
|
idioma
简体中文 (chino simplificado)
繁體中文 (chino tradicional)
日本語 (japonés)
한국어 (coreano)
ไทย (tailandés)
Български (búlgaro)
Čeština (checo)
Dansk (danés)
Deutsch (alemán)
English (inglés)
Español de Hispanoamérica
Ελληνικά (griego)
Français (francés)
Italiano
Bahasa Indonesia (indonesio)
Magyar (húngaro)
Nederlands (holandés)
Norsk (noruego)
Polski (polaco)
Português (Portugués de Portugal)
Português-Brasil (portugués de Brasil)
Română (rumano)
Русский (ruso)
Suomi (finés)
Svenska (sueco)
Türkçe (turco)
Tiếng Việt (vietnamita)
Українська (ucraniano)
Comunicar un error de traducción
⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠋⠀⠀⠀⠹⣿⣦⡀
⠀⠀⢀⣴⣿⣿⣿⣿⣏⠀⠀⠀⠀⠀⠀⢹⣿⣧
⠀⠀⠙⢿⣿⡿⠋⠻⣿⣿⣦⡀⠀⠀⠀⢸⣿⣿⡆
⠀⠀⠀⠀⠉⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⢸⣿⣿⡇
⠀⠀⠀⠀⢀⣀⣄⡀⠀⠀⠈⠻⣿⣿⣶⣿⣿⣿⠁
⠀⠀⠀⣠⣿⣿⢿⣿⣶⣶⣶⣶⣾⣿⣿⣿⣿⡁
⢠⣶⣿⣿⠋⠀⠀⠉⠛⠿⠿⠿⠿⠿⠛⠻⣿⣿⣦⡀
⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r ,
que relaciona a integral de superfície do rotacional de um campo vetorial numa superfície Σ no espaço tridimensional euclidiano à integral de linha do campo vetorial sobre sua fronteira, é um caso especial do teorema generalizado de Stokes (com n = 2) uma vez que se identifica um campo vetorial com uma 1-forma usando a métrica do espaço euclidiano. A curva da integral de linha, ∂Σ, deve ter orientação positiva, de modo que dr aponta no sentido anti-horário quando a normal da superfície, dΣ, aponta em direção ao observador, seguindo a regra da mão direita. Uma consequência da fórmula é que as linhas de campo de um campo vetorial com rotacional nulo não podem ter contorno fechado.
A fórmula pode ser escrita como:
∬ Σ { ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y
──────────█░░░░░░▒▒▒█▒█
─────────█░░░░░░▒▒▒█▒░█
───────▄▀░░░░░░▒▒▒▄▓░░█
──────█░░░░░░▒▒▒▒▄▓▒░▒▓
─────█▄▀▀▀▄▄▒▒▒▒▓▀▒░░▒▓
───▄▀░░░░░░▒▀▄▒▓▀▒░░░▒▓
──█░░░░░░░░░▒▒▓▀▒░░░░▒▓
──█░░░█░░░░▒▒▓█▒▒░░░▒▒▓
───█░░▀█░░▒▒▒█▒█░░░░▒▓▀
────▀▄▄▀▀▀▄▄▀░█░░░░▒▒▓─
──────────█▒░░█░░░▒▒▓▀─
───────────█▒░░█▒▒▒▒▓──
────────────▀▄▄▄▀▄▄▀
⠄⠄⠄⠄⠄⠄⢀⣴⣿⡿⠟⠛⠛⠻⠿⠿⠿⠿⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣿⣿⡋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠙⢿⣿⡄⠄⠄⠄⠄⠄.⠄
⠄⠄⠄⠄⠄⢾⣿⣿⡇⣴⣦⣤⣶⣦⡀⠄⢠⣴⣶⣶⣶⣼⣿⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠸⣿⣿⠙⠿⠿⠿⠍⠛⠃⠄⠈⠉⠉⠿⠿⠋⢻⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⢿⣿⣆⠄⠄⠄⠄⠄⣠⣤⣤⡄⠄⠄⠄⠄⡞⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠈⢻⣿⡀⠄⠄⢀⣀⣈⣙⣉⣀⣀⡀⠄⢠⠧⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢻⣿⣿⣦⡛⠉⠐⠒⠒⠂⠈⠙⣴⡿⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣷⣶⣶⣶⣷⣶⣶⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣴⡟⠻⣿⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄⠄