Steam installeren
inloggen
|
taal
简体中文 (Chinees, vereenvoudigd)
繁體中文 (Chinees, traditioneel)
日本語 (Japans)
한국어 (Koreaans)
ไทย (Thai)
Български (Bulgaars)
Čeština (Tsjechisch)
Dansk (Deens)
Deutsch (Duits)
English (Engels)
Español-España (Spaans - Spanje)
Español - Latinoamérica (Spaans - Latijns-Amerika)
Ελληνικά (Grieks)
Français (Frans)
Italiano (Italiaans)
Bahasa Indonesia (Indonesisch)
Magyar (Hongaars)
Norsk (Noors)
Polski (Pools)
Português (Portugees - Portugal)
Português - Brasil (Braziliaans-Portugees)
Română (Roemeens)
Русский (Russisch)
Suomi (Fins)
Svenska (Zweeds)
Türkçe (Turks)
Tiếng Việt (Vietnamees)
Українська (Oekraïens)
Een vertaalprobleem melden
⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠋⠀⠀⠀⠹⣿⣦⡀
⠀⠀⢀⣴⣿⣿⣿⣿⣏⠀⠀⠀⠀⠀⠀⢹⣿⣧
⠀⠀⠙⢿⣿⡿⠋⠻⣿⣿⣦⡀⠀⠀⠀⢸⣿⣿⡆
⠀⠀⠀⠀⠉⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⢸⣿⣿⡇
⠀⠀⠀⠀⢀⣀⣄⡀⠀⠀⠈⠻⣿⣿⣶⣿⣿⣿⠁
⠀⠀⠀⣠⣿⣿⢿⣿⣶⣶⣶⣶⣾⣿⣿⣿⣿⡁
⢠⣶⣿⣿⠋⠀⠀⠉⠛⠿⠿⠿⠿⠿⠛⠻⣿⣿⣦⡀
⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r ,
que relaciona a integral de superfície do rotacional de um campo vetorial numa superfície Σ no espaço tridimensional euclidiano à integral de linha do campo vetorial sobre sua fronteira, é um caso especial do teorema generalizado de Stokes (com n = 2) uma vez que se identifica um campo vetorial com uma 1-forma usando a métrica do espaço euclidiano. A curva da integral de linha, ∂Σ, deve ter orientação positiva, de modo que dr aponta no sentido anti-horário quando a normal da superfície, dΣ, aponta em direção ao observador, seguindo a regra da mão direita. Uma consequência da fórmula é que as linhas de campo de um campo vetorial com rotacional nulo não podem ter contorno fechado.
A fórmula pode ser escrita como:
∬ Σ { ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y
──────────█░░░░░░▒▒▒█▒█
─────────█░░░░░░▒▒▒█▒░█
───────▄▀░░░░░░▒▒▒▄▓░░█
──────█░░░░░░▒▒▒▒▄▓▒░▒▓
─────█▄▀▀▀▄▄▒▒▒▒▓▀▒░░▒▓
───▄▀░░░░░░▒▀▄▒▓▀▒░░░▒▓
──█░░░░░░░░░▒▒▓▀▒░░░░▒▓
──█░░░█░░░░▒▒▓█▒▒░░░▒▒▓
───█░░▀█░░▒▒▒█▒█░░░░▒▓▀
────▀▄▄▀▀▀▄▄▀░█░░░░▒▒▓─
──────────█▒░░█░░░▒▒▓▀─
───────────█▒░░█▒▒▒▒▓──
────────────▀▄▄▄▀▄▄▀
⠄⠄⠄⠄⠄⠄⢀⣴⣿⡿⠟⠛⠛⠻⠿⠿⠿⠿⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣿⣿⡋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠙⢿⣿⡄⠄⠄⠄⠄⠄.⠄
⠄⠄⠄⠄⠄⢾⣿⣿⡇⣴⣦⣤⣶⣦⡀⠄⢠⣴⣶⣶⣶⣼⣿⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠸⣿⣿⠙⠿⠿⠿⠍⠛⠃⠄⠈⠉⠉⠿⠿⠋⢻⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⢿⣿⣆⠄⠄⠄⠄⠄⣠⣤⣤⡄⠄⠄⠄⠄⡞⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠈⢻⣿⡀⠄⠄⢀⣀⣈⣙⣉⣀⣀⡀⠄⢠⠧⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢻⣿⣿⣦⡛⠉⠐⠒⠒⠂⠈⠙⣴⡿⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣷⣶⣶⣶⣷⣶⣶⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣴⡟⠻⣿⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄⠄