安裝 Steam
登入
|
語言
簡體中文
日本語(日文)
한국어(韓文)
ไทย(泰文)
Български(保加利亞文)
Čeština(捷克文)
Dansk(丹麥文)
Deutsch(德文)
English(英文)
Español - España(西班牙文 - 西班牙)
Español - Latinoamérica(西班牙文 - 拉丁美洲)
Ελληνικά(希臘文)
Français(法文)
Italiano(義大利文)
Bahasa Indonesia(印尼語)
Magyar(匈牙利文)
Nederlands(荷蘭文)
Norsk(挪威文)
Polski(波蘭文)
Português(葡萄牙文 - 葡萄牙)
Português - Brasil(葡萄牙文 - 巴西)
Română(羅馬尼亞文)
Русский(俄文)
Suomi(芬蘭文)
Svenska(瑞典文)
Türkçe(土耳其文)
tiếng Việt(越南文)
Українська(烏克蘭文)
回報翻譯問題
⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠋⠀⠀⠀⠹⣿⣦⡀
⠀⠀⢀⣴⣿⣿⣿⣿⣏⠀⠀⠀⠀⠀⠀⢹⣿⣧
⠀⠀⠙⢿⣿⡿⠋⠻⣿⣿⣦⡀⠀⠀⠀⢸⣿⣿⡆
⠀⠀⠀⠀⠉⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⢸⣿⣿⡇
⠀⠀⠀⠀⢀⣀⣄⡀⠀⠀⠈⠻⣿⣿⣶⣿⣿⣿⠁
⠀⠀⠀⣠⣿⣿⢿⣿⣶⣶⣶⣶⣾⣿⣿⣿⣿⡁
⢠⣶⣿⣿⠋⠀⠀⠉⠛⠿⠿⠿⠿⠿⠛⠻⣿⣿⣦⡀
⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r ,
que relaciona a integral de superfície do rotacional de um campo vetorial numa superfície Σ no espaço tridimensional euclidiano à integral de linha do campo vetorial sobre sua fronteira, é um caso especial do teorema generalizado de Stokes (com n = 2) uma vez que se identifica um campo vetorial com uma 1-forma usando a métrica do espaço euclidiano. A curva da integral de linha, ∂Σ, deve ter orientação positiva, de modo que dr aponta no sentido anti-horário quando a normal da superfície, dΣ, aponta em direção ao observador, seguindo a regra da mão direita. Uma consequência da fórmula é que as linhas de campo de um campo vetorial com rotacional nulo não podem ter contorno fechado.
A fórmula pode ser escrita como:
∬ Σ { ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y
──────────█░░░░░░▒▒▒█▒█
─────────█░░░░░░▒▒▒█▒░█
───────▄▀░░░░░░▒▒▒▄▓░░█
──────█░░░░░░▒▒▒▒▄▓▒░▒▓
─────█▄▀▀▀▄▄▒▒▒▒▓▀▒░░▒▓
───▄▀░░░░░░▒▀▄▒▓▀▒░░░▒▓
──█░░░░░░░░░▒▒▓▀▒░░░░▒▓
──█░░░█░░░░▒▒▓█▒▒░░░▒▒▓
───█░░▀█░░▒▒▒█▒█░░░░▒▓▀
────▀▄▄▀▀▀▄▄▀░█░░░░▒▒▓─
──────────█▒░░█░░░▒▒▓▀─
───────────█▒░░█▒▒▒▒▓──
────────────▀▄▄▄▀▄▄▀
⠄⠄⠄⠄⠄⠄⢀⣴⣿⡿⠟⠛⠛⠻⠿⠿⠿⠿⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣿⣿⡋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠙⢿⣿⡄⠄⠄⠄⠄⠄.⠄
⠄⠄⠄⠄⠄⢾⣿⣿⡇⣴⣦⣤⣶⣦⡀⠄⢠⣴⣶⣶⣶⣼⣿⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠸⣿⣿⠙⠿⠿⠿⠍⠛⠃⠄⠈⠉⠉⠿⠿⠋⢻⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⢿⣿⣆⠄⠄⠄⠄⠄⣠⣤⣤⡄⠄⠄⠄⠄⡞⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠈⢻⣿⡀⠄⠄⢀⣀⣈⣙⣉⣀⣀⡀⠄⢠⠧⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢻⣿⣿⣦⡛⠉⠐⠒⠒⠂⠈⠙⣴⡿⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣷⣶⣶⣶⣷⣶⣶⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣴⡟⠻⣿⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄⠄