Nainstalovat Steam
přihlásit se
|
jazyk
简体中文 (Zjednodušená čínština)
繁體中文 (Tradiční čínština)
日本語 (Japonština)
한국어 (Korejština)
ไทย (Thajština)
български (Bulharština)
Dansk (Dánština)
Deutsch (Němčina)
English (Angličtina)
Español-España (Evropská španělština)
Español-Latinoamérica (Latin. španělština)
Ελληνικά (Řečtina)
Français (Francouzština)
Italiano (Italština)
Bahasa Indonesia (Indonéština)
Magyar (Maďarština)
Nederlands (Nizozemština)
Norsk (Norština)
Polski (Polština)
Português (Evropská portugalština)
Português-Brasil (Brazilská portugalština)
Română (Rumunština)
Русский (Ruština)
Suomi (Finština)
Svenska (Švédština)
Türkçe (Turečtina)
Tiếng Việt (Vietnamština)
Українська (Ukrajinština)
Nahlásit problém s překladem
⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠋⠀⠀⠀⠹⣿⣦⡀
⠀⠀⢀⣴⣿⣿⣿⣿⣏⠀⠀⠀⠀⠀⠀⢹⣿⣧
⠀⠀⠙⢿⣿⡿⠋⠻⣿⣿⣦⡀⠀⠀⠀⢸⣿⣿⡆
⠀⠀⠀⠀⠉⠀⠀⠀⠈⠻⣿⣿⣦⡀⠀⢸⣿⣿⡇
⠀⠀⠀⠀⢀⣀⣄⡀⠀⠀⠈⠻⣿⣿⣶⣿⣿⣿⠁
⠀⠀⠀⣠⣿⣿⢿⣿⣶⣶⣶⣶⣾⣿⣿⣿⣿⡁
⢠⣶⣿⣿⠋⠀⠀⠉⠛⠿⠿⠿⠿⠿⠛⠻⣿⣿⣦⡀
⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r ,
que relaciona a integral de superfície do rotacional de um campo vetorial numa superfície Σ no espaço tridimensional euclidiano à integral de linha do campo vetorial sobre sua fronteira, é um caso especial do teorema generalizado de Stokes (com n = 2) uma vez que se identifica um campo vetorial com uma 1-forma usando a métrica do espaço euclidiano. A curva da integral de linha, ∂Σ, deve ter orientação positiva, de modo que dr aponta no sentido anti-horário quando a normal da superfície, dΣ, aponta em direção ao observador, seguindo a regra da mão direita. Uma consequência da fórmula é que as linhas de campo de um campo vetorial com rotacional nulo não podem ter contorno fechado.
A fórmula pode ser escrita como:
∬ Σ { ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y
──────────█░░░░░░▒▒▒█▒█
─────────█░░░░░░▒▒▒█▒░█
───────▄▀░░░░░░▒▒▒▄▓░░█
──────█░░░░░░▒▒▒▒▄▓▒░▒▓
─────█▄▀▀▀▄▄▒▒▒▒▓▀▒░░▒▓
───▄▀░░░░░░▒▀▄▒▓▀▒░░░▒▓
──█░░░░░░░░░▒▒▓▀▒░░░░▒▓
──█░░░█░░░░▒▒▓█▒▒░░░▒▒▓
───█░░▀█░░▒▒▒█▒█░░░░▒▓▀
────▀▄▄▀▀▀▄▄▀░█░░░░▒▒▓─
──────────█▒░░█░░░▒▒▓▀─
───────────█▒░░█▒▒▒▒▓──
────────────▀▄▄▄▀▄▄▀
⠄⠄⠄⠄⠄⠄⢀⣴⣿⡿⠟⠛⠛⠻⠿⠿⠿⠿⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣿⣿⡋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠙⢿⣿⡄⠄⠄⠄⠄⠄.⠄
⠄⠄⠄⠄⠄⢾⣿⣿⡇⣴⣦⣤⣶⣦⡀⠄⢠⣴⣶⣶⣶⣼⣿⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠸⣿⣿⠙⠿⠿⠿⠍⠛⠃⠄⠈⠉⠉⠿⠿⠋⢻⡇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⢿⣿⣆⠄⠄⠄⠄⠄⣠⣤⣤⡄⠄⠄⠄⠄⡞⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠈⢻⣿⡀⠄⠄⢀⣀⣈⣙⣉⣀⣀⡀⠄⢠⠧⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢻⣿⣿⣦⡛⠉⠐⠒⠒⠂⠈⠙⣴⡿⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣷⣶⣶⣶⣷⣶⣶⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣴⡟⠻⣿⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄⠄