Steam telepítése
belépés
|
nyelv
简体中文 (egyszerűsített kínai)
繁體中文 (hagyományos kínai)
日本語 (japán)
한국어 (koreai)
ไทย (thai)
Български (bolgár)
Čeština (cseh)
Dansk (dán)
Deutsch (német)
English (angol)
Español - España (spanyolországi spanyol)
Español - Latinoamérica (latin-amerikai spanyol)
Ελληνικά (görög)
Français (francia)
Italiano (olasz)
Bahasa Indonesia (indonéz)
Nederlands (holland)
Norsk (norvég)
Polski (lengyel)
Português (portugáliai portugál)
Português - Brasil (brazíliai portugál)
Română (román)
Русский (orosz)
Suomi (finn)
Svenska (svéd)
Türkçe (török)
Tiếng Việt (vietnámi)
Українська (ukrán)
Fordítási probléma jelentése
/)─―ヘ
_/ \
/ ● ●丶
| ▼ |
| 亠ノ
U ̄U ̄ ̄ ̄ ̄U ̄
+rep
.
The ⊢ symbol has not changed; it means that the formula to which it applies is asserted to be true. ⊃ is logical implication, and ≡ is logical equivalence. Λ is the empty set, which we write nowadays as ∅. ∩ ∪ and ∈ have their modern meanings: ∩ and ∪ are the set intersection and the union operators, and x∈y means that x is an element of set y.
The remaining points are semantic. α and β are sets. 1 denotes the set of all sets that have exactly one element. That is, it's the set { c : there exists a such that c = { a } }. Theorems about 1 include, for example:
that Λ∉1 (∗52.21),
that if α∈1 then there is some x such that α = {x} (∗52.1), and
that {x}∈1 (∗52.22).
2 is similarly the set of all sets that have exactly two elements. An important theorem about 2 is ∗54.3, which says
∗54.3.⊢2=α^{(∃x).x∈α.α−ι‘x∈1}.