Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
De manera precisa el teorema enuncia que si {\displaystyle f}f es una función continua en un intervalo cerrado {\displaystyle [a,b]}[a,b] y diferenciable en el intervalo abierto {\displaystyle (a,b)}(a,b) entonces existe un punto {\displaystyle c}c en {\displaystyle (a,b)}(a,b) tal que la recta tangente en el punto {\displaystyle c}c es paralela a la recta secante que pasa por los puntos {\displaystyle (a,f(a))}{\displaystyle (a,f(a))} y {\displaystyle (b,f(b))}{\displaystyle (b,f(b))}, esto es