| E C H O | Ancient650
Proof the sum of all positive integers is equal to negative one over twelve
Let a = 1 - 1 + 1 - 1 + 1 - 1 ...
2a = 1 - 1 + 1 - 1 + 1 - 1 ...
+ 1 - 1 + 1 - 1 + 1 ...
= 1
a = 1/2
Let b = 1 - 2 + 3 - 4 + 5 - 6 ...
2b = 1 - 2 + 3 - 4 + 5 - 6 ...
+ 1 - 2 + 3 - 4 + 5 ...
= 1 - 1 + 1 - 1 + 1 - 1 ...
= 1/2
b = 1/4
Let c = 1 + 2 + 3 + 4 + 5 + 6 ...
c - 4c = 1 + 2 + 3 + 4 + 5 + 6 ...
- 4 - 8 - 12 ...
-3c = 1 - 2 + 3 - 4 + 5 - 6 ...
= 1/4
3c = -1/4
c = -1/12
Therefore the sum of all positive integers (1,2,3,4,5,6...) is equal to negative one over twelve. Q.E.D.
Proof the sum of all positive integers is equal to negative one over twelve
Let a = 1 - 1 + 1 - 1 + 1 - 1 ...
2a = 1 - 1 + 1 - 1 + 1 - 1 ...
+ 1 - 1 + 1 - 1 + 1 ...
= 1
a = 1/2
Let b = 1 - 2 + 3 - 4 + 5 - 6 ...
2b = 1 - 2 + 3 - 4 + 5 - 6 ...
+ 1 - 2 + 3 - 4 + 5 ...
= 1 - 1 + 1 - 1 + 1 - 1 ...
= 1/2
b = 1/4
Let c = 1 + 2 + 3 + 4 + 5 + 6 ...
c - 4c = 1 + 2 + 3 + 4 + 5 + 6 ...
- 4 - 8 - 12 ...
-3c = 1 - 2 + 3 - 4 + 5 - 6 ...
= 1/4
3c = -1/4
c = -1/12
Therefore the sum of all positive integers (1,2,3,4,5,6...) is equal to negative one over twelve. Q.E.D.
Currently Offline
Recent Activity
0.1 hrs on record
last played on 19 Aug, 2022
791 hrs on record
last played on 19 Aug, 2022
0 hrs on record
last played on 4 Jan, 2022