Steam installeren
inloggen
|
taal
简体中文 (Chinees, vereenvoudigd)
繁體中文 (Chinees, traditioneel)
日本語 (Japans)
한국어 (Koreaans)
ไทย (Thai)
Български (Bulgaars)
Čeština (Tsjechisch)
Dansk (Deens)
Deutsch (Duits)
English (Engels)
Español-España (Spaans - Spanje)
Español - Latinoamérica (Spaans - Latijns-Amerika)
Ελληνικά (Grieks)
Français (Frans)
Italiano (Italiaans)
Bahasa Indonesia (Indonesisch)
Magyar (Hongaars)
Norsk (Noors)
Polski (Pools)
Português (Portugees - Portugal)
Português - Brasil (Braziliaans-Portugees)
Română (Roemeens)
Русский (Russisch)
Suomi (Fins)
Svenska (Zweeds)
Türkçe (Turks)
Tiếng Việt (Vietnamees)
Українська (Oekraïens)
Een vertaalprobleem melden
https://www.instagram.com/p/Cjd6qYtPcA0/
Dr Negato:
Rocko - Official TF2 Wiki | Official Team Fortress Wiki (wiki.teamfortress.com)
https://wiki.teamfortress.com/wiki/Rocko
[10:33 PM]
ᴿᴺᴳ ATARIS★ツ:
oh damn that got added?
[10:37 PM]
Dr Negato:
yes yesterday updateà
Zed will suck anyone ♥♥♥♥ for one
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average D ick height of about 80 cm off the ground. The average D ick weighs about 100 grams.
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
So in conclusion If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.
Friday Night Fights
Scoreboard - 6/4/2021
Pier: Blu 5 - Red 1
FifthCurve: Blu 5 - Red 4
MoonBase B9: Blu 4 - Red 3
Metropolis B7: Blu 2 - Red 0