grentperez
Miyazumi
Tachikawa, Tokyo, Japan
Sisiguraduhing,
Sa piling ko’y tiyak
Ang ligaya
Ikaw lang ang iibigin
At ‘di magdadal’wang isip
Na ibaling ang dalisay kong sadya
Ang makasama ka hanggang sa pagtanda
Sisiguraduhing,
Sa piling ko’y tiyak
Ang ligaya
Ikaw lang ang iibigin
At ‘di magdadal’wang isip
Na ibaling ang dalisay kong sadya
Ang makasama ka hanggang sa pagtanda
Currently Offline
R I C E. 22 Jan @ 9:50am 
-rep
GALIT SA KALBONG AUTISTIC ŃIGGAS 22 Nov, 2023 @ 9:28am 
Discrete-time Fourier Transform (DTFT)
• Consider the 2-pt moving average
𝐻 𝑧 = 1
2 + 1
2 𝑧−1 𝑧 > 0 𝐻 𝑤 = 1
2 + 1
2 𝑒−𝑗𝑤 = 1
2 + 1
2 𝑐𝑜𝑠 𝑤 − 𝑗 1
2 𝑠𝑖𝑛 𝑤
𝐻 𝑤 = 1
2 + 1
2 𝑐𝑜𝑠 𝑤
𝜃 𝑤 = −𝑎𝑡𝑎𝑛 𝑠𝑖𝑛 𝑤
1 + 𝑐𝑜𝑠 𝑤
GALIT SA KALBONG AUTISTIC ŃIGGAS 22 Nov, 2023 @ 9:27am 
Discrete-time Fourier Transform (DTFT)
• Consider a causal bandpass system with the following pole-zero
placement
𝐻 𝑧 = 1 − 𝑟2
2
1 − 𝑧−2
1 − 2𝑟𝑐𝑜𝑠 𝑤0 𝑧−1 + 𝑟2𝑧−2 𝐻 𝑤 = 1 − 𝑟2
2
1 − 𝑧−2
1 − 2𝑟𝑐𝑜𝑠 𝑤0 𝑒−𝑗𝑤 + 𝑟2𝑒−𝑗2𝑤
𝑟 = 0.75
𝑎 = 0.95
𝑤𝑜 = 0.5𝜋
GALIT SA KALBONG AUTISTIC ŃIGGAS 22 Nov, 2023 @ 9:27am 
Discrete-time Fourier Transform (DTFT)
• Consider an FIR system with the following transfer function
𝐻 𝑧 = 1
2 − 1
2𝑧−5 𝐻 𝑤 = 1
2 − 1
2𝑐𝑜𝑠 5𝑤 + 𝑗1
2𝑠𝑖𝑛 5𝑤
GALIT SA KALBONG AUTISTIC ŃIGGAS 22 Nov, 2023 @ 9:27am 
Discrete-time Fourier Transform (DTFT)
• Consider an exponential sequence (−1 < 𝑎 < 0,causal, and stable)
1 + 𝑎 𝑎𝑛𝑢 𝑛 ↔ 1 + 𝑎
1 − 𝑎𝑧−1 𝑅𝑂𝐶 𝑧 > 𝑎 𝐻 𝑤 = 1 + 𝑎
1 − 𝑎𝑒−𝑗𝑤 = 1 + 𝑎
1 − 𝑎𝑐𝑜 𝑠 𝑤 + 𝑗𝑎𝑠𝑖𝑛 𝑤
𝜃 𝑤 = −𝑎𝑡𝑎𝑛 𝑎𝑠𝑖𝑛 𝑤
1 − 𝑎𝑐𝑜𝑠 𝑤
𝐻 𝑤 = 1 + 𝑎
1 + 𝑎2 − 2𝑎𝑐𝑜𝑠 𝑤
𝑎 = −1
2
𝑎 = −3
4
Highpass
GALIT SA KALBONG AUTISTIC ŃIGGAS 22 Nov, 2023 @ 9:26am 
Discrete-time Fourier Transform (DTFT)
• Consider an exponential sequence (0 < 𝑎 < 1,causal, and stable)
1 − 𝑎 𝑎𝑛𝑢 𝑛 ↔ 1 − 𝑎
1 − 𝑎𝑧−1 𝑅𝑂𝐶 𝑧 > 𝑎 𝐻 𝑤 = 1 − 𝑎
1 − 𝑎𝑒−𝑗𝑤 = 1 − 𝑎
1 − 𝑎𝑐𝑜 𝑠 𝑤 + 𝑗𝑎𝑠𝑖𝑛 𝑤
𝐻 𝑤 = 1 − 𝑎
1 + 𝑎2 − 2𝑎𝑐𝑜𝑠 𝑤
𝜃 𝑤 = −𝑎𝑡𝑎𝑛 𝑎𝑠𝑖𝑛 𝑤
1 − 𝑎𝑐𝑜𝑠 𝑤
𝑎 = 1
2
𝑎 = 3
4
lowpass