gert
United States
 
 



local weezerhead
Понастоящем извън линия
Изложение на худ. творби
_
59 46 7
Изложение на снимки
𝙇𝙤𝙨𝙩 𝙄𝙣 𝙊𝙧𝙞𝙗𝙞𝙩
85 38 7
Любима игра
Любимо ръководство
Създадено от — Yummy yummy trash
1 451 оценки
Welcome to the #1 rated guide of all time for KSP!! Some math, technical terms & basic mechanics necessary for your success in Kerbal Space Program. This guide is suitable for any human being of average mathematical and technical background.
Изложение на най-редките постижения
Изложение на рецензиите
Изиграни 25 ч.
You can thank me later.

(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)”
Коментари
MrWood 28 авг. 2024 в 5:43 
Happy Chewsday Innit!
Acosar 2 юли 2024 в 4:26 
this guy actually good guy : )
Acosar 2 юли 2024 в 4:24 
lmao nvm wrong guy im dumb af
Acosar 2 юли 2024 в 4:22 
gert likes to camp far away with snipers ew. all point and laugh.
fentanyl baby 21 май 2024 в 5:04 
⣿⣿⣿⣿⣿⣿⣿⠟⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣿
⣿⣿⣿⣿⣿⣿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢺⣿
⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠜⣿
⣿⣿⣿⣿⠿⠿⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣿⣿
⣿⣿⡏⠁⠀⠀⠀⠀⠀⣀⣠⣤⣤⣶⣶⣶⣶⣶⣦⣤⡄⠀⠀⠀⠀⢀⣴⣿
⣿⣿⣷⣄⠀⠀⠀⢠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⡧⠇⢀⣤⣶
⣿⣿⣿⣿⣿⣿⣾⣮⣭⣿⡻⣽⣒⠀⣤⣜⣭⠐⢐⣒⠢⢰
⣿⣿⣿⣿⣿⣿⣿⣏⣿⣿⣿⣿⣿⣿⡟⣾⣿⠂⢈⢿⣷⣞
⣿⣿⣿⣿⣿⣿⣿⣿⣽⣿⣿⣷⣶⣾⡿⠿⣿⠗⠈⢻⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠻⠋⠉⠑⠀⠀⢘⢻
⣿⣿⣿⣿⣿⣿⣿⡿⠟⢹⣿⣿⡇⢀⣶⣶⠴⠶⠀⠀⢽
⣿⣿⣿⣿⣿⣿⡿⠀⠀⢸⣿⣿⠀⠀⠣⠀⠀⠀⠀⠀⡟⢿⣿
⣿⣿⣿⡿⠟⠋⠀⠀⠀⠀⠹⣿⣧⣀⠀⠀⠀⠀⡀⣴⠁⢘⡙
⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢿⠗⠂⠄⠀⣴⡟⠀
gert 9 дек. 2023 в 6:30 
:KScared: